Latest Research

Home>Latest Research>An integrated optical modulator operating at cryogenic temperatures

An integrated optical modulator operating at cryogenic temperatures

Eltes, F., Villarreal-Garcia, G.E., Caimi, D. et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. (2020). doi.org/10.1038/s41563-020-0725-5

Photonic integrated circuits (PICs) operating at cryogenic temperatures are fundamental building blocks required to achieve scalable quantum computing and cryogenic computing technologies1,2. Silicon PICs have matured for room-temperature applications, but their cryogenic performance is limited by the absence of efficient low-temperature electro-optic modulation. Here we demonstrate electro-optic switching and modulation from room temperature down to 4 K by using the Pockels effect in integrated barium titanate (BaTiO3) devices3. We investigate the temperature dependence of the nonlinear optical properties of BaTiO3, showing an effective Pockels coefficient of 200 pm V−1 at 4 K. The fabricated devices show an electro-optic bandwidth of 30 GHz, ultralow-power tuning that is 109 times more efficient than thermal tuning, and high-speed data modulation at 20 Gbps. Our results demonstrate a missing component for cryogenic PICs, removing major roadblocks for the realization of cryogenic-compatible systems in the field of quantum computing, supercomputing and sensing, and for interfacing those systems with instrumentation at room temperature.