Latest Research

Home>Latest Research>An unbounded number of independent observers can share the nonlocality of a single maximally entangled qubit pair

An unbounded number of independent observers can share the nonlocality of a single maximally entangled qubit pair

By Peter J. Brown and Roger Colbeck. Submitted to arXiv on 26 Mar 2020.

Alice and Bob each have half of a pair of entangled qubits. Bob measures his half and then passes his qubit to a second Bob who measures again and so on. The parties work together to try to maximize the number of them that can have an expected violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality with the single Alice. It was conjectured in [Phys. Rev. Lett. 114, 250401 (2015)] that when the Bobs act independently and with unbiased inputs then at most two of them can expect to violate the CHSH inequality with Alice. Here we show that, contrary to the conjecture, arbitrarily many independent Bobs can have an expected CHSH violation with the single Alice. Our proof is constructive and our measurement strategies can be generalized to work with a larger class of two-qubit states that includes all pure entangled two-qubit state. Since violation of a Bell inequality is necessary for device-independent tasks, our work represents a step towards an eventual understanding of the limitations on how much device-independent randomness can be robustly generated from a single pair of qubits.

Read the full paper here.