By Marco Polini, Francesco Giazotto, Kin Chung Fong, Ioan M. Pop, Carsten Schuck, Tommaso Boccali, Giovanni Signorelli, Massimo D’Elia, Robert H. Hadfield, Vittorio Giovannetti, Davide Rossini, Alessandro Tredicucci, Dmitri K. Efetov, Frank H. L. Koppens, Pablo Jarillo-Herrero, Anna Grassellino, Dario Pisignano.
Submitted to arXiv on 23 January 2022.
Technologies operating on the basis of quantum mechanical laws and resources such as phase coherence and entanglement are expected to revolutionize our future. Quantum technologies are often divided into four main pillars: computing, simulation, communication, and sensing & metrology. Moreover, a great deal of interest is currently also nucleating around energy-related quantum technologies. In this Perspective, we focus on advanced superconducting materials, van der Waals materials, and moiré quantum matter, summarizing recent exciting developments and highlighting a wealth of potential applications, ranging from high-energy experimental and theoretical physics to quantum materials science and energy storage.