Latest Research

Home>Latest Research>Spacetime symmetries and the qubit Bloch ball: A physical derivation of finite-dimensional quantum theory and the number of spatial dimensions

October 4, 2021

Return to Latest Research

Spacetime symmetries and the qubit Bloch ball: A physical derivation of finite-dimensional quantum theory and the number of spatial dimensions

Pitalúa-García D., 2021, ‘Spacetime symmetries and the qubit Bloch ball: A physical derivation of finite-dimensional quantum theory and the number of spatial dimensions’, Phys. Rev. A 104, 032220. DOI: https://doi.org/10.1103/PhysRevA.104.032220

Quantum theory and relativity are the pillar theories on which our understanding of physics is based. Poincaré invariance is a fundamental physical principle stating that the experimental results must be the same in all inertial reference frames in Minkowski spacetime. It is a basic condition imposed on quantum theory in order to construct quantum field theories, hence, it plays a fundamental role in the standard model of particle physics too. As is well known, Minkowski spacetime follows from clear physical principles, like the relativity principle and the invariance of the speed of light. Here we reproduce such a derivation but leave the number of spatial dimensions n as a free variable. Then, assuming that spacetime is Minkowski in 1+n dimensions and within the framework of general probabilistic theories, we reconstruct the qubit Bloch ball and finite dimensional quantum theory, and obtain that the number of spatial dimensions must be n=3, from Poincaré invariance and other physical postulates. Our results suggest a fundamental physical connection between spacetime and quantum theory.